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1. Introduction

Fuel cells have generated considerable interest in recent years,
being heralded as the power generating devices of the future. Pro-
ton exchange membrane (PEM) fuel cells are prime candidates to
eventually replace the internal combustion engine (ICE) in vehicles.
They use hydrogen as fuel, which reacts electrochemically (without
direct combustion) with oxygen to produce electrical power. The
only emissions from a fuel cell are water and heat, thereby making
them more environmentally friendly than ICEs.

Fuel cell modeling and simulation are critical aspects of the
development of fuel cell technology. This is evident from the
numerous publications pertaining to fuel cell modeling over the
past 15 years. Fuel cell modeling has evolved from 1D to 3D [1–3],
from steady state to transient, from single phase to two phases
[4], and from straight channels to more complex serpentine and
inter-digitated flow fields [5–8]. Our group, as well as others, were
responsible for the development of intermediate to high tem-
perature PEM fuel cell modeling using alternative membranes to
Nafion®, e.g. polybenzimidazole (PBI) [9–16].

Abbreviations: CL, catalyst layer; GDE, governing differential equation; GDL, gas
diffusion layer; PEM, proton exchange membrane.
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esented which allow for analytical solutions of the catalyst layer transport
PEM fuel cells. These techniques transform the volumetric reaction terms
eliminating the need for computational solving of the catalyst layer prob-
ical fuel cell model—a computational model that entails analytical rather
er solutions. This helps to alleviate the meshing difficulties inherent in the
eometric aspect ratios, and hence reduce the computational requirements

e implemented in a 3D PEM fuel cell model, and the results of the semi-
ith the full computational model in terms of the polarization performance
ribution. In addition, these analytical solutions were able to reduce the
ry by a factor of approximately 3, and the computational time by a factor

© 2008 Elsevier B.V. All rights reserved.

Fuel cell modeling may be divided into two categories—
transport modeling and system modeling. Transport models are
used when specific details of transport phenomena need to be
studied. They are comprehensive; they study the relevant transport
phenomena occurring within the fuel cell, and solve the governing
equations in the multi-dimension space-time fuel cell domain. The

level of detail and complexity often determines the required com-
putational resources. The convergence time of a transport model
may range from minutes to days depending on the level of complex-
ity and the available computational resources, which may range
from a single desktop/laptop to a parallel processing network.
Transport modeling has been used to conduct parametric studies
of fuel cell performance [3], and to investigate design issues such
as fuel composition, water and thermal management [8], catalyst
micro-structure [7], the effect of flow field geometries [5,6], and
the effect of using different types of membranes [9–16].

System models, on the other hand, are used when the entire
power plant containing the fuel cell stack needs to be analyzed.
These models are not devoted to the detailed analysis of transport
phenomena, but rather the fuel cell system as a whole, and specifi-
cally how the fuel cell interacts (sometimes in real time) with other
physical and virtual components. As a result they require less com-
putational resources. System models have been used in real time
simulation and for design of control systems [17], and thus require
fast computations being performed numerous times. Real time
models require these computations to be performed up to 1000
times every second [18]. Control models, employing feedback loops,

http://www.sciencedirect.com/science/journal/03787753
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Nomenclature

a effective surface area (m−1), reaction term constant
c specific heat capacity (J kg−1 K−1), constant of pro-

portionality
Di, j diffusivity of gas pair i–j (m2 s−1)
F Faraday constant, 96487 C mol−1

i current density (A m−2)
i0 exchange current density (A m−2)
j reaction rate (A m−3)
k thermal conductivity (W m−1 K−1), mathematical

constant
m mole fraction
M molar mass (kg mol−1)
n reaction parameter
P pressure (Pa)
R reaction term, universal gas constant,

8.3143 J mol−1 K−1

S source, entropy

2. Rationale

Meshing is difficult in a fuel cell for two reasons. First, there are
very large geometric aspect ratios, since the dimensions normal to
the membrane cross-section (x direction) are up to three orders of
magnitude smaller than the other dimensions. Secondly, even in the
x direction, there are significant scaling discrepancies, since the cat-
alyst layer is up to two orders of magnitude thinner than the other
regions. So meshing becomes very difficult, often requiring scaling
to create the optimum balance between reducing memory require-
ments and compromising model accuracy. Fig. 1 shows a schematic
of the fuel cell sub-domains. This figure depicts straight channel
flow fields showing half of the channel cross-section and half of
the ribs, with symmetry being assumed across the y extremes. Fig. 2
shows the same sub-domains as Fig. 1, but with the finite element
mesh displayed. It shows how dense a mesh must be used in the
catalyst layers.

The catalyst layer is a very thin (∼10 �m) three-dimensional
T temperature (K)
u velocity (m s−1)

Greek letters
˛ charge transfer coefficient
ˇ gas permeability (m2)
� concentration parameter
ε porosity
� dynamic viscosity (Pa s)
� density (kg m−3)
� electrical or ionic conductivity (S m−1)
ϕ electrical or ionic potential (V)

Subscripts and superscripts
e electrolyte phase
eff effective
i, j species i, j
s solid phase
T thermal

also require numerous computations to be performed in a short
space of time. So for system models, it is necessary to greatly sim-
plify the problem in order to reduce computational requirements.

Consequently, system models are usually 0D (lumped models) or
1D [19]. Essentially system models compromise detail for speed.
For certain applications, especially those involving control systems,
there is the need to either increase the level of detail of system mod-
els, or reduce the computational requirements of transport models.
Mathematical techniques designed to reduce the computational
requirements of transport models are the focus of this paper.

A purely mathematical model will require very little computer
memory, since it will analytically solve the fuel cell governing
equations resulting in a closed form solution. However, this is not
realistic due to the highly non-linear nature of the fuel cell gov-
erning differential equations, and thus closed form mathematical
solutions do not exist. A purely computational model on the other
hand, does require a high amount of computer memory. Such mod-
els use finite element, finite volume or finite difference methods to
approximate the real problem. Meshing is primarily responsible for
the large memory requirements. Most of the models published in
the open literature are computational, involving very little if any
mathematical solutions. As such, very few analytical models have
been reported, and the most that do are designed to be stand-alone
models, not incorporated into computational models [20–25]. Lit-
ower Sources 183 (2008) 164–173 165

Fig. 1. PEM fuel cell regions and computational sub-domains.

ster and Djilali [26] published 1D analytical solutions of the cathode
catalyst layer, which they implemented in a 2D model of an air-
breathing fuel cell. Since the meshing requirements are most
demanding in the catalyst region (see Figs. 1 and 2), an analytical
solution of the catalyst problem incorporated into a computational
model will greatly reduce the computational requirements. The
present work considers both the anode and cathode catalyst layers,
and implements the analytical solutions in a 3D fuel cell model.
region sputtered with catalyst particles, and with electrochemical
reaction rates varying along the thickness of the layer. Modeling

Fig. 2. 3D finite element mesh.
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the CL as a finite-sized region is very demanding and much care
must be taken with regards to computer memory requirements and
convergence. Also, depending on the reaction rate, there may be a
very high rate of species depletion on the outer surface of the cata-
lyst region, thus confining the electrochemical reactions to an even
thinner layer of the catalyst region. In such cases, an even denser
mesh must be used in that ultra thin region.

Some modelers have precluded this problem by treating the
catalyst region as an infinitesimally small interface, rather than
a finite-sized region, all of the reaction phenomena being reck-
oned on this interface. Typically, the species concentration at this
interface is used in the Butler–Volmer equation (or Tafel equation),
for which the effective catalyst surface area must be adjusted to
account for the transformation from the actual 3D porous catalyzed
region to a simplified 2D catalyzed interface. One problem with this
approach is that it does not account for the concentration variation
that actually exists across the 3D catalyst region.

In this work, we develop mathematical solutions to the phe-
nomena occurring in the 3D catalyst region. These solutions are
used to quantify the amount of species consumption or gener-
ation, and consequently to more accurately specify the flux of
species occurring at the GDL/CL interface. In other words, these
techniques mathematically transform the volumetric catalyst layer
source terms into interfacial boundary conditions (flux terms). This
treatment precludes the problem of meshing the catalyst layer, thus
reducing the computational requirements of the model, while at
the same time utilizing a more accurate 3D to 2D transformation
than is currently practiced.

3. Model equations

The fuel cell model consists of a highly coupled non-linear
multi-physics problem involving flow in porous media, diffu-
sion and convection of species, heat transfer, charge transfer and
electrochemical reactions. These phenomena are modeled using
the Navier–Stokes equations, Darcy’s law, the Stefan–Maxwell
equations, the heat equation, Ohm’s law, and the Butler–Volmer
equation. These governing differential equations (GDEs) are listed
below.

�u · ∇u = −∇P + ∇(�∇u) − �

ˇ
u (1)

∇ ·
(
P

RT
umi −

P

RT
Deff
i ∇mi

)
= Si (2)
∇ · (�cuT − �ck∇T) = ST (3)

∇ · is = ∇ · (−�eff
s ∇�s) = −j (4)

∇ · ie = ∇ · (−�eff
e ∇�e) = +j (5)

where j represents the rate of proton generation, which is positive at
the anode and negative at the cathode. Note in Eq. (2), the term P/RT
is used for the total molar gas concentration to avoid an obfuscation
of terminology, and is assumed to be locally constant, consistent
with the earlier simplifications. m is the mole fraction, and Si is the
molar source term. The following source terms exist only in the
catalyst layers, where electrochemical reactions take place. They
quantify the consumption of oxygen and hydrogen, as well as the
generation of water and heat, all as a function of the reaction rate,
j.

j = airef
0 mi

�i

{
exp

[
˛aF

RT
	
]

− exp
[
−˛cF

RT
	
]}

(6)

SO2 = jc
4F

(7)
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SH2 = − ja
2F

(8)

SH2O = − jc
2F

(9)

Srxn = −jc
(
	− T 
S

nF

)
(10)

The boundary conditions pertinent to this paper are the conditions
at the GDL/CL and the CL/PEM interfaces. Species enter the catalyst
region, react, and no flow occurs across the membrane. Across the
CL/PEM boundary, there is no fluid flow and no diffusion of species.
This is true of PBI membranes. The Nafion® membrane does allow
species crossover, especially water. Our research is primarily inter-
ested in alternative high temperature membranes, such as PBI, so
our results focus on PBI fuel cells.

4. Analytical techniques

It is close to impossible to solve the full fuel cell problem using
mathematical techniques alone because of the highly non-linear
nature of the problem. It is possible, however, to solve it using
numerical techniques, which requires extensive meshing and com-
putational requirements, depending on the level of detail desired.
This section discusses the simplifications of the physical prob-
lem necessary for a purely mathematical treatment of the catalyst
layer problem, and the development of those approaches. These
mathematical solutions are intended to replace the need for com-
putational modeling of the catalyst layer. The volumetric CL source
terms are transformed into interfacial boundary conditions to be
specified at the GDL/CL interfaces. The end result will be a model
that employs mathematical rather than computational solutions
of the catalyst layer problem. This will be called a semi-analytical
model and is shown schematically in Fig. 3.

When this model is implemented in a computational model, the
catalyst layer sub-domains are merged with the membrane to form
one larger sub-domain where all ionic transport takes place. This
will minimize the error in determining the effective ionic resistance
of the cell.

The following simplifications are made in order to enable math-
ematical solutions to the catalyst layer equations.

(1) Since the flow in the porous regions is typically dominated by
diffusion, we neglect the convection terms in the catalyst layer
GDEs.
(2) We assume anisotropic behavior in the catalyst region. Since the
catalyst region is thin, we assume that the transport of species
occurs primarily in the x direction (normal to the cross-section).
Therefore, we neglect transport in the y and z directions, which
enables a pseudo 1D treatment of the catalyst problem. Note
that this restriction applies only in the catalyst layers and not
the gas diffusion layers or the gas channels.

(3) We further assume that since the catalyst region is thin in
the x direction, changes in temperature, pressure and activa-
tion overpotential occurring across the layer can be neglected.
Essentially, we assume these quantities only vary in the y and
z directions in the catalyst layer, and there is no interaction
between state properties at different (y, z) locations, consis-
tent with assumption (2). Again, these restrictions apply only
to the catalyst layers. It should be noted that we do not assume
isothermal conditions, only constant x direction temperature
along the thin catalyst layer at each (y, z) location.

(4) Species concentration and reaction rates are the only param-
eters that vary significantly across the catalyst layer in the x
direction. We do not assume constant concentration of species
or constant electrochemical rates across the catalyst layer, since
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e mat
Fig. 3. Schematic and scope of th

assumptions of this nature are far from realistic. Instead we offer
analytical solutions of the x variation in concentration at each
(y, z) location.

With these assumptions, the Butler–Volmer Eq. (6) reduces to

j(x, y, z) = a(y, z)m(x, y, z)n (11)

where the species subscript, i, is dropped, and the value a is
an x direction constant representing all the other terms in the
Bulter–Volmer equation. From this point, the (x, y, z) notation will
be dropped. The typical values for n in the PEM fuel cell are 1
(cathode) and 1/2 (anode).

We see that the volumetric reaction rate depends solely on
the species concentration—hydrogen at the anode, oxygen at the
cathode. Further, the species consumption source terms are linear
functions of j.

S = −kj = −kamn (12)

where k is a positive constant.
The species conservation Eq. (2) in the catalyst region becomes

P P 2
RT
u∇m = 0 =

RT
D∇ m+ S (13)

or

d2m

dx2
=

(
kaRT

PD

)
mn = b2 mn (14)

Eq. (14) is the simplified x direction species transport equation,
which is solved at each (y, z) location. This equation is defined in the
catalyst layer (0 < x < �), where � is the catalyst layer thickness, and
x is measured from the GDL to the CL. Note that for the cathode CL,
this co-ordinate is directed in the opposite direction to that shown
in Figs. 1 and 2.

The concentration at x = 0 is known from the computational
solution of the GDL problem, while insulation conditions exist at
x = �. The mathematical representations of these boundary condi-
tions are

m(0, y, z) = m0(y, z) (15)

d
dx
m(�, y, z) = 0 (16)

For the case of n = 1, the solution to Eq. (14) is very straightforward.
For n = 1/2, analytical closed form solutions do not exist. Instead, we
hematical techniques presented.

offer approximate analytical solutions based on typical conditions
that often occur in PEM fuel cells. The first case is an approxima-
tion for fast reaction rates. The second case involves a Taylor series
approximation to translate the power term to a linear term. The
third case applies to very slow reaction rates, where the species con-
centration does not change significantly across the catalyst layer.
These cases will then be compared for accuracy.

4.1. Case 1—fast reaction rates

When the species consumption rate is very high, the concentra-
tion quickly decreases to zero within the catalyst layer. This may
happen at high current densities, or when a very active catalyst
layer is present. Paradoxically, in such cases, the thin catalyst layer
can be treated as infinitely large compared to the length scale of
the electrochemical reaction.

Using the substitution,

 (m) = dx
dm

(17)

Eq. (14) becomes,
− 1
 3

d 
dm

= b2 mn (18)

This can be solved using separation of variables to obtain

1
 

= dm
dx

= −b
(

2m1+n

1 + n

)1/2

(19)

The constant of integration is set to zero in order to satisfy the
condition that both the concentration and flux are zero when x = �.
Since from Fick’s law, diffusion is proportional to the negative of the
first derivative of concentration, we use the negative square root in
Eq. (19). From Eq. (19), we can obtain the boundary flux in terms of
the mole fraction at x = 0.

dm
dx

∣∣∣
x=0

= −b
(

2m1+n
0

1 + n

)1/2

(20)

∣∣∣PD
RT

dm
dx

∣∣∣
x=0

(
2kaPDm1+n

0
RT(1 + n)

)1/2

(21)
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2F

kcathode = 1
4F

(36)

The following quantities represent the boundary condition at the
GDL/CL interface that replace the volumetric CL source terms.

Case 1:

flux(H2) =
(

4kaPDH2

3RT

)1/2

m3/4
H2

(37)
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This term represents the flux of species leaving the GDL and enter-
ing the CL at position (y, z) in terms of the species mole fraction at
(y, z). This term now replaces the volumetric generation term in the
catalyst region. Instead of an insulation condition being specified
at the CL/PEM interface, a flux (or convection) condition is speci-
fied at the GDL/CL interface, which accounts for the electrochemical
reactions occurring in the CL.

The solution can be further developed to get

m1−n/2
0 −m1−n/2 = a

21/2

1 − n
(1 + n)1/2

x (22)

This is valid for 0 < x < �. The mole fraction, m falls to zero when

x = [2(1 + n)]1/2

a(1 − n)
m1−n/2

0 (23)

We expect the case 1 solution to provide accurate results when the
catalyst layer is larger than the RHS of Eq. (23), which provides an
estimate of the thickness of the catalyst layer actually being utilized
for electrochemical reactions.

All of the other source terms can be written in terms of the
species source term. Suppose a particular source term is linearly
related to the species source term, such that

S = cb2mn (24)

where c is the constant of proportionality. To find the total genera-
tion (or consumption) of that particular source term, S needs to be
integrated over the catalyst region. The result would be,∫ �

x=0

S dx = cb2

∫ 0

m=m0

mn
dx
dm

dm (25)

∫ �

x=0

S dx = cb
∫ 0

ω=ω0

ωn
(

1 + n
2m1+n

)1/2
dm (26)

∫ �

x=0

S dx = −c dm
dx

∣∣∣
x=0

(27)

∫ �

x=0

S dx = −cb
(

2
1 + n

)1/2
m(1+n)/2

0 (28)

∫ �

x=0

S dx = −c dm
dx

∣∣∣
x=0

(29)

Not surprisingly, this is the same result that was previously
obtained in Eq. (21). So all source terms (which are proportional
to the species source term) can be transformed and written as lin-
ear functions of the species boundary flux with the same constants

of proportionality.

4.2. Case 2—Taylor series approximations

In cases where the reactions are not fast enough to totally con-
sume the reactants, the case 1 solution would lose accuracy. In fact,
we would expect it to overestimate the reaction rate. In such cases,
we may opt for an “exact” solution. If n = 1, the differential equation
is easily solvable. For 0 < n < 1, we can use the binomial expansion
to linearize the power term, resulting in a solvable equation.

mn = [1 − (1 −m)]n ≈ 1 − n (1 −m) = nm+ (1 − n) (30)

This approximation obviously works best when the mole fraction
is close to unity, and is actually exact when n = 1. The solution is

dm
dx

∣∣∣
x=0

= bn1/2 1 − exp(2b�n1/2)
1 + exp(2b�n1/2)

(
nm0 + 1 − n

n

)

= b

n1/2

1 − exp(2b�n1/2)
1 + exp(2b�n1/2)

mn0 (31)
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∣∣∣PD
RT

dm
dx

∣∣∣
x=0

=
(
kaPD

nRT

)1/2 1 − exp(2b�n1/2)
1 + exp(2b�n1/2)

mn0 (32)

4.3. Case 3—slow reaction rates

If the reaction rates are very slow, the concentration of the
species does not vary significantly across the catalyst layer. This
is sometimes the case with hydrogen. Since the reaction rate con-
stant for the oxidation of hydrogen is significantly faster than the
rate of oxygen reduction, the latter is the rate controlling step. So
although the hydrogen is readily available for reaction, hydrogen
only reacts at a rate necessary to provide a sufficient supply of pro-
tons for the oxygen reaction. This rate is much less than the rate at
which hydrogen is capable of reacting, and as a result the hydrogen
concentration does not vary significantly in the x direction across
the catalyst layer. In such cases, we may assume that the concen-
tration is constant across the catalyst layer. The amount of species
that reacts, which is the same as the amount that diffuses across
the interface, is simply

∣∣∣PD
RT

dm
dx

∣∣∣
x=0

= −ka�mn0 (33)

4.4. Summary of all cases

At the anode, n = 1/2, and at the cathode, n = 1.

a = airef
0

∣∣∣exp
(
˛aE

RT
	
)

− exp
(

−˛cF

RT
	
)∣∣∣ (34)

kanode = 1
(35)
flux(O2) =
(
kaPDO2

RT

)1/2

mO2 (38)

Case 2:

flux(H2) = −1 − exp[�(2kaRT/PDH2 )1/2]

1 + exp[�(2kaRT/PDH2 )1/2]

(
2kaPDH2mH2

RT

)1/2

(39)

flux(O2) = −1 − exp[2�(kaRT/PDO2 )1/2]

1 + exp[2�(kaRT/PDO2 )1/2]

(
kaPDO2

RT

)1/2

mO2

(40)
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for 1D
Fig. 4. Concentration profile

Case 3:

flux(H2) = ka�m1/2
H2

(41)
flux(O2) = ka�mO2 (42)

The remaining boundary conditions can be written as linear factors
of the hydrogen and oxygen fluxes. ia and ic are respectively, the
electronic-to-ionic current transfer at the anode and the ionic-to-
electronic current transfer at the cathode. q is the heat of reaction
evaluated at the cathode GDL/CL interface.

flux(H2O) = −2 flux(O2) (43)

ia = 2F flux(H2) (44)

ic = 4F flux(O2) (45)

qrxn =
(
	− T 
S

nF

)
ic (46)

5. Results and discussion

The formulations derived in Section 4 are now tested
for validation. First they will be applied to a simple 1D
convection–conduction problem with a source term. Secondly, they

Fig. 5. Concentration profile for 1D
validation (a = 10−3, n = 1).

will be applied to a full 3D model of a PEM fuel cell equipped with
a PBI membrane.
5.1. Validation with a simplified problem

Consider a simplified conduction–convection problem gov-
erned by species conservation and Darcy’s law. All units are
consistent with the SI system, although not very important in this
simplified example.

−10−6 d2C

dx2
+ udC

dx
= R (47)

du
dx

= −10−4 d2P

dx2
= R (48)

where,

R =
{

0, −1< x < 0
−aCn, 0< x < 0.2

}
(49)

The boundary conditions are

C(−1) = 1 (50)

P(−1) = 105 (51)

validation (a = 10−5, n = 1).
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for 1D
Fig. 6. Concentration profile

d
dx
C(0.2) = 0 (52)

d
dx
P (0.2) = 0 = u (0.2) (53)

This is first solved using a finite element approach with the reaction
region (0 < x < 0.2) meshed and the spatial source term, R applied.
This full computational solution is called C. It is then solved using
the analytical catalyst layer treatment described in Section 4. These
solutions, presented for cases 1, 2 and 3, are respectively called
C1, C2 and C3. The two quantities that are varied are a and n. a
represents the rate of reaction term—a high value representing a
fast reaction rate, and n represents the order of the reaction.

Consider the case when n = 1 and a = 10−3 (Fig. 4). This repre-
sents a fast reaction rate—evident by the fact that the concentration
C falls to zero within the catalyst region (0 < x < 0.2). C2 matches
almost exactly with C, while C1 and C3 slightly underestimate the
concentration. With n = 1, C2 provides an exact solution to the cata-
lyst layer equations. Therefore, it is not surprising that it accurately
simulates C.

Setting a = 10−5, which represents a slower reaction rate, results
in an exaggeration of this result. Again, and expectedly as Fig. 5
shows, C2 matches almost exactly with C. Now C1 and C3 underesti-

mate the concentration by an even greater amount. This is expected
since C1 works best when the reaction rate is fast. Thus, the higher
the value of a, the better is the accuracy of C1. In both cases, C3
has a small error. C3 assumes a constant concentration across the
catalyst layer which is not the case in this problem. As a result,
it must mathematically reduce the concentration everywhere to
compensate for this inaccuracy. Most PEM fuel cell models, which
use an interfacial catalyst layer treatment, employ a method which
more closely resembles C3 than any of the other two. Note that this
formulation does not always provide accurate results.

Now setting n = 1/2 and a = 10−3 (fast reaction rate), Fig. 6 shows
that C1 provides the best estimate of C. C2 is only accurate when C is
close to 1, which is not the case here. So C2 slightly underestimates
the concentration. For similar reasons as above, C3 also underes-
timates the concentration. Therefore, it is not surprising that C1
provides such accurate results, since it assumes very fast reaction
rates.

Setting a = 10−6 (Fig. 7), which represents a slow reaction rate,
C1 now underestimates the concentration since it imposes a higher
reaction rate than is warranted. In this case, C2 and C3 provide
accurate results. C2 is accurate because the concentration is close
validation (a = 10−3, n = 1/2).

to 1, thus rendering the Taylor series approximation valid. C3 is
accurate because the actual concentration, C in the catalyst region
does not change significantly. For the anode reaction in PEM fuel
cells, this is the most realistic scheme. So from the simplified valida-
tion test, it seems that C2 and C3 would provide the most accurate
scheme for the anode reaction, while C2 appears to be the best
choice at the cathode where n = 1.

5.2. Validation with full 3D PEM fuel cell model

These analytical formulations are now incorporated in our pre-
vious 3D computational PBI fuel cell model [12], and results are
compared. The previous model is fully computational, while the
new implementation is semi-analytical. All numerical constants
and operating conditions remain unaltered. These constants, listed
in [12], are not repeated here since they are not relevant to the
findings of this paper. It is only the comparisons of the various for-
mulations with the full computational model that is of essence.
All concentration profiles are shown for an operating cell voltage
of 0.3 V. The notation HiOj means that the case i formulation is
used on the hydrogen side (anode), while the case j formulation
is used at the oxygen side (cathode). H0O0 refers to the original
computational model.
Fig. 8 shows the IV curve of the original computational model
and five of the semi-analytical solutions. H3O2, H3O3 and H2O2
all provide a very close match with H0O0, such that they are
indistinguishable from each other on the graph. Both H1O2 and
H3O1 produce inaccurate results since they require that the con-
centration of hydrogen and oxygen, respectively, fall to zero in
the catalyst layer. As a result, they both impose higher reaction
rates than are warranted by the actual problem. H3O1 is interest-
ing. At low current densities (or low reaction rates), the deviation
from H0O0 is very large. However, as the current density increases,
the error becomes smaller. This is expected since at higher cur-
rent densities, the depletion of oxygen becomes more pronounced.
It can be expected that in cases where the oxygen concentra-
tion is fully depleted, the O1 formulation would provide accurate
results.

Fig. 9 shows the hydrogen mole fraction along the gas channels
and gas diffusion layers for the full computational model, H0O0.
The mole fraction in the anode catalyst layer is not shown for the
purpose of comparisons. The mole fraction varies from an inlet of
0.963 to a lowest value of 0.961. In this case, the hydrogen concen-
tration does not show much variation, neither in the z direction
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Fig. 7. Concentration profile for 1D validation (a = 10−6, n = 1/2).

Fig. 8. Polarization curves (H0O0, H1O2, H2O2, H3O2, H3O1, H3O3).

Fig. 9. Hydrogen mole fraction (H0O0).



172 D.F. Cheddie, N.D.H. Munroe / Journal of Power Sources 183 (2008) 164–173
Fig. 10. Hydrogen mole fractio

nor in the x direction. H2O2, H3O2 and H3O3 all produce results
which are barely distinguishable from each other. Consequently,
only one diagram (Fig. 10) is used to display all of them. These
solutions predict a similar concentration profile, but with a low
mole fraction of 0.956, which is a slight deviation from the 0.961 of
the computational model. However, in the context of the hydrogen
concentration that does not vary significantly, this deviation is not
considerable.

Fig. 11 shows the oxygen mole fraction for H0O0, with the mass
fraction ranging from 0.126 to 0.194. This represents a much more
significant concentration variation, as is expected with oxygen.
Fig. 12 shows the equivalent plot for H2O2, H3O2 and H3O3, respec-
tively, which as was the case with hydrogen, are indistinguishable
from each other. The analytical solutions match the oxygen mole
fraction almost perfectly, with the computational solution, showing
virtually no difference in range or variation.

These results show that the mathematical formulations all pro-
vide a very accurate representation of the full computational model,
but it greatly reduces the computational memory requirements

Fig. 11. Oxygen mole f
n (H2O2, H2O3, H3O3).

and computation speed, since there is no need for meshing of the
catalyst layer. The full computational model requires 5350 second-
order tetrahedral elements, while the semi-analytical models only
require 1910 finite elements. The computational model requires
24 min to gradually converge upon a solution, while the semi-
analytical models require 6 min, all starting with identical initial
estimates. All computations were performed on a Windows XP plat-
form, with a 2 GHz Intel Pentium 4 processor and 512 MB RAM,
using the multi-physics software FEMLAB 3.1i®.

This becomes particularly useful when dealing with larger scale
models. The present model only simulated one-half channel and
half rib, and assumed y direction symmetry. If it were required
to simulate serpentine flow fields, for instance, the computational
requirements would be much greater. The formulations presented
here can help to reduce that requirement and allow larger problems
to be modeled with less computational resources. The techniques
presented here can also be applied to 2D transport models, and
may simplify them enough to be used in system models involving
control systems and other applications.

raction (H0O0).
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action

[5] S. Ge, B. Yi, J. Power Sources 124 (2003) 1–11.
Fig. 12. Oxygen mole fr

6. Conclusions
Analytical solutions were presented for the transport and elec-
trochemical problem in PEM fuel cell catalyst layers at both the
anode and cathode. These solutions transformed the volumetric
reaction terms to boundary fluxes, thereby eliminating the need to
mesh the catalyst layer. The result was a model that required less
computational memory and converged in less time.

These semi-analytical solutions matched very well with a full
computational model in terms of the polarization results, hydrogen
and oxygen concentration. The results showed that the analytical
techniques did not compromise the accuracy of the model. It was
further suggested that these techniques could reduce the compu-
tational requirements of 2D transport models, whereby allowing
them to be incorporated into system models.

The techniques presented in this paper applied primarily to
high temperature PEM fuel cells, using alternative membranes to
Nafion®, e.g. PBI.
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